Modal deduction in second-order logic and set theory. II


In this paper, we generalize the set-theoretic translation method for polymodal logic introduced in [11] to extended modal logics. Instead of devising an ad-hoc translation for each logic, we develop a general framework within which a number of extended modal logics can be dealt with. We first extend the basic set-theoretic translation method to weak monadic second-order logic through a suitable change in the underlying set theory that connects up in interesting ways with constructibility; then, we show how to tailor such a translation to work with specific cases of extended modal logics.