Fuzzy Algebraic Theories

Abstract

In this work we propose a formal system for fuzzy algebraic reasoning. The sequent calculus we define is based on two kinds of propositions, capturing equality and existence of terms as members of a fuzzy set. We provide a sound semantics for this calculus and show that there is a notion of free model for any theory in this system, allowing us (with some restrictions) to recover models as Eilenberg-Moore algebras for some monad. We will also prove a completeness result: a formula is derivable from a given theory if and only if it is satisfied by all models of the theory. Finally, leveraging results by Milius and Urbat, we give HSP-like characterizations of subcategories of algebras which are categories of models of particular kinds of theories.

Publication
Leibniz International Proceedings in Informatics, LIPIcs

Related